JavaScript Pitfalls

Ming Chow (mchow@cs.tufts.edu)
SOURCE Boston 2013

Overview

* JavaScript is now a first-class citizen and it has
never been more important

 What has pushed JavaScript to being a first-
class citizen: client-side web applications,
AJAX, jQuery, mobile, V8 engine, more
powerful web browsers, HTMLS5, server-side
development

 More powers, more potentials for abuse (and
to be misunderstood)

Scope of Presentation

* JavaScript in:
— HTML5 APIs
— Node.js
— Database systems such as MongoDB

Review: Same-Origin Policy

Restricts how a document or script loaded from one
origin can interact with a resource from another origin

Same-origin = same protocol, same port, and same
host

Documentation:
https://developer.mozilla.org/en-US/docs/JavaScript/
Same origin policy for JavaScript

Bypass traditional same-origin policy by:

— <script src="..."></script>

— <link rel="stylesheet" href="...">

— <img.. />

Cross-Origin JavaScript Requests (or
Cross-Origin Resource Sharing)

We are slowing moving away from the same-
domain policy

\I>IV03th|rectIy part of HTML5 but introduced by

XDomainRequest () created by Microsoft in
Internet Explorer 8

XMLHttpRequest () is starting to allow
cross-domain requests (Firefox 3.5+ and
Safari 4+)

Caveat: consent between web page and the
server is required.

Cross Origin Resource Sharing (CORS)

Origin

http://fexample.com

serves the original
document / app context

CORS - aware
Browser

i

CORS - aware
web server

cross-site
XHR

htip:/fremote-service.com

serves cross-site
HTTP requests

Image source: http://software.dzhuvinov.com/cors-filter.html

CORS (continued)

» Server must respond with an Access-Control-
Allow-Origin header of either * (a.k.a., universal
allow) or the exact URL of the requesting page (site-
level; white-list)

« Example 1 (BAD!): header ('Access-Control-Allow-
Origin: *');
« Example 2 (BAD!): Access-Control-Allow-
Origin: http://allowed.origin/page?
cors=other.allowed.origin%Z20malicious.spoof
 Resolutions:
 Validate response

« Add some form of authentication / credentials checking via
withCredentials property on XMLHttpRequest (e.g.,
cookie)

Web GL

Impressive technology on the web browser
 http://chrome.angrybirds.com/
« http://alteredqualia.com/three/examples/webgl cars.html

Issue is simple: WebGL requires browser having
direct access to graphics hardware

Known exploits due to bugs in WebGL
implementation:

« Cross-domain image stealing (from the memory of the
graphics hardware

« Denial of Service

Resolution: disable Web GL on your web browser
(e.g., in Chrome, run chrome://flags/ and go to
“"Disable WebGL")

The Mechanics of a WebGL Attack

(" Computer ™
é User Mode)
/\Nob Browser
WebGL
o
_ J
(Kemd Mode
Griucs Driver
Graghics Hardware
\ J
. Y,

A user visits a site where
malicious WebGL script
is present

The WebGL
component uploads
the specified 3D
geometry and code to
the graphics card

e The geometry or code

exploits issues in
buggy or unpatched
graphics drivers

o The graphics hardware

can be attacked
causing the entire
system to freeze or
crash

Image source:

http://www.contextis.com/research/blog/webgl-new-dimension-browser-

exploitation/

o

Graphics Memory Stealing

LR

Ll L

= R ;'.:
e A S 2 o

- - = o - am
Confidentia) Document

1S.CO

v

ecu

Image source:

Malicious Webserver serves
code to the user's browser
which enables WebGL

Another application on the
computer uses the graphics card
implicitly through desktop
composition to draw a
confidential document

Rendered window written to
shared graphics memory

Due to small bug in WebGL
implementation other
application’s window from shared
graphics memory exposed to
untrusted code

Malicious code sends back
captured data to the malicious
server

http://www.contextis.com/research/blog/webgl-more-webgl-security-flaws/

Web Workers

* CPU hog

« If a page uses a worker, you cannot stop it
with the browser’s stop button (i.e., crash
browser).

 Unlike threads, cannot set the priority of a
worker.

Web Sockets

® Allows for multiplexing bi-directional, full-
duplex communications channels over a
single TCP connection (between client and
server)

® Communications done over port 80

Web Sockets (continued)

Another unfinished standard. The original
design was riddled with flaws.

o So bad that Mozilla had to turn it off.
Data is always in plaintext

Trusting clients (you know the drill by now, |
hope)

MitM
Checking the origin

Local Storage

Storage: ~5 MB of data per origin on the client-side (i.e.,
browser)

According to the official spec,
http://www.w3.org/TR/webstorage/:
— "User agents should guard against sites storing data under the
origins other affiliated sites, e.qg. storing up to the limit in
al.example.com, a2.example.com, a3.example.com, etc,

circumventing the main example.com storage limit. A mostly
arbitrary limit of five megabytes per origin is recommended.”

How it works: no guard against affiliated sites / subdomains
(e.g., 1.filldisk.com, 2.filldisk.com, 3.filldisk.com)

Still an open issue on Chrome, IE, Safari. Not an issue on
Firefox as Firefox has a 10 MB local storage cap for any
domain. Try http://feross.org/fill-disk/

Node.js

Server-side JavaScript
Non-locking

Great for creating fast, scalable, and lightweight
networking software such as web servers

A lot less bloated, less administration, and faster
than Apache

You still have to verify responses

Node.js: Server-Side Injection
(whatcouldpossiblygowrong)

var http = require('http');
http.createServer (function (request, response) {
if (request.method === 'POST') {
var data = '"';
request.addListener ('data', function (chunk) {
data += chunk;
}) g
request.addListener ('end', function() {
try {
eval (" (" + data + ")");
}
catch (exception) {}
}) g
}
}) .1listen (3000) ;

console.log('Listening on port 3000...");

Review: JavaScript
eval (code as string)

* The idea: executes string argument to function
as JavaScript code

« Example usage (client-side): parsing JSON with
eval ()
« Remember, JSON is a subset of JavaScript

« The better option: use JSON.parse ()
 Built-in to some browsers such as Chrome

« JSON.parse () will throw an exception if the text contains
anything dangerous.

 Even more dangerous now on server-side

Mongo DB

NoSQL; JSON-like document-storage
Very fast

No admin user or authentication enabled by
default (must modify /etc/mongodb.conf).
Alas, anyone can connect to your database from
mongo

Information gathering by simply looking at the
startup log collectioninthe local db

Injection attacks a bit harder to do but still very
doable via Swhere and db.eval ()

In Summary: The Common Themes

U1

This is no longer your father's JavaScript.

Even more important now to verify the
responses and origins.

. Some principles we have known for years are

fading away.
Old security still matters.

. Too common for people using technology

naively.

Too common for organizations roll out APIs and
technology naively.

References

Chow, M. Abusing HTML5. DEF CON 19 Hacking Conference, The Rio All Suite
Hotel and Casino, Las Vegas, NV, August 5 -7, 2011.

Crockford, D. JavaScript: The Good Parts, O’Reilly Media, 2008.

Sullivan, B. Server-Side JavaScript Injection, BlackHat USA, 2011.
http://www.contextis.com/research/blog/webgl-new-dimension-browser-
exploitation/
http://www.contextis.com/research/blog/webgl-more-webgl-security-flaws/
http://news.cnet.com/8301-30685 3-20025272-264.html
http://bishankochher.blogspot.com/2011/12/nodejs-security-good-bad-and-
ugly.html

http://www.slideshare.net/ASF-WS/asfws-2012-nodejs-security-old-
vulnerabilities-in-new-dresses-par-sven-vetsch

http://feross.org/fill-disk/

https://community.qualys.com/blogs/securitylabs/2012/08/15/would-you-let-
your-grandma-use-websockets

