
Swift and Security
(not @SwiftOnSecurity)

OWASP Boston Chapter: December 3, 2014
Ming Chow

mchow@cs.tufts.edu
Twitter: @0xmchow

mailto:mchow@cs.tufts.edu
mailto:mchow@cs.tufts.edu

Disclaimer

We are all new to Apple’s Swift Programming
Language.

Why Apple’s Swift Programming Language

● Friendlier and gentler than Objective-C…
● ...therefore, I predict there will be an influx of

new developers…
● ...who may be programming for the first

time…
● ...who will be clueless about the idea of

security

What’s the Point of this Presentation?

Whether you are a first time developer or
seasoned mobile developer, we need to start
the conversation about security issues related
to a programming language or framework early
on. You don’t want history to repeat itself.

What Does Swift Give You in Terms of
Security?

● “Hides” pointers
● Type safety and type checking
● Type inference
● “Values are never implicitly converted to

another type” [1]
● Array bounds checking
● Playground for debugging

What Hasn’t Changed from Objective-C

● The usual gang: operators, operands,
conditionals, syntax

● Automatic Reference Counting (ARC)
● No garbage collection

The Potentially Interesting
● Legacy support: seamless Cocoa and Objective-C

compatibility including interaction with pointers
● A “compiled” programming language and an

“interpreted” scripting language. [4]
● “Int can store any value between -2,147,483,648 and

2,147,483,647, and is large enough for many integer
ranges.” [1]

● “Every string is composed of encoding-independent
Unicode character” (including Emoji)

Access Control
1. private entities (e.g., classes) are available only from

within the source file where they are defined.
2. internal (DEFAULT) entities are available to the

entire module that includes the definition (e.g. an app or
framework target).

3. public entities are intended for use as API, and can
be accessed by any file that imports the module, e.g. as
a framework used in several of your projects.

Source: [10]

Pointers in Swift

● Yes, you can interact with pointers in Swift!
○ In C: const Type *

■ In Swift: UnsafePointer<Type>
○ In C: Type *

■ In Swift: UnsafeMutablePointer<Type>
● Documentation: [11]

About Working with Pointers in Swift
Swift works hard to make interaction with C pointers convenient, because of their pervasiveness within Cocoa, while

providing some level of safety. However, interaction with C pointers is inherently unsafe compared to your other Swift

code, so care must be taken. In particular:

● These conversions cannot safely be used if the callee saves the pointer value for use after it returns. The

pointer that results from these conversions is only guaranteed to be valid for the duration of a call. Even if you

pass the same variable, array, or string as multiple pointer arguments, you could receive a different pointer

each time. An exception to this is global or static stored variables. You can safely use the address of a global

variable as a persistent unique pointer value, e.g.: as a KVO context parameter.

● Bounds checking is not enforced when a pointer to an Array or String is passed. A C-based API can’t

grow the array or string, so you must ensure that the array or string is of the correct size before passing it

over to the C-based API. [12]

Format Strings

● The good news: printf() is no longer
allowed (it was allowed in early summer).
println() and print()with string
interpolation are now used

● However, you can still have format strings in
Swift via NSString(format: …)

What Swift Does NOT Offer --yet [2][10]

1. Taint checking for user inputs
2. Query parameterization (e.g., for Core Data)
3. Lint

What to Do Next?

● Generally speaking, the risks are a lot lower
with Swift

● Refer to Apple’s “Introduction to Secure
Coding Guide” [13]

References
1. “The Swift Programming Language” https://developer.apple.

com/library/mac/documentation/Swift/Conceptual/Swift_Programming_Language/#//apple_ref/doc/uid/TP400140
97-CH3-XID_0

2. http://www.safelightsecurity.com/swift-pros-and-cons
3. http://www.drdobbs.com/security/security-issues-in-swift-what-the-new-la/240168882
4. http://blog.erratasec.com/2014/06/why-it-had-to-be-swift.html
5. http://itsecurity.co.uk/2014/06/apples-new-swift-is-it-secure/
6. https://www.checkmarx.com/2014/08/20/swift-security-issues/
7. https://news.ycombinator.com/item?id=7837627
8. https://www.reddit.com/r/swift/comments/2efjdv/security_issues_in_swift_what_the_new_language/
9. http://teks.co.in/site/blog/14-reasons-apple-swift-quite-ideal-programming-language-yet/

10. https://developer.apple.com/swift/blog/?id=5
11. https://developer.apple.

com/library/ios/documentation/Swift/Conceptual/BuildingCocoaApps/InteractingWithCAPIs.html
12. https://developer.apple.com/swift/blog/?id=6
13. https://developer.apple.com/library/mac/documentation/Security/Conceptual/SecureCodingGuide/Introduction.

html

https://developer.apple.com/library/mac/documentation/Swift/Conceptual/Swift_Programming_Language/#//apple_ref/doc/uid/TP40014097-CH3-XID_0
https://developer.apple.com/library/mac/documentation/Swift/Conceptual/Swift_Programming_Language/#//apple_ref/doc/uid/TP40014097-CH3-XID_0
https://developer.apple.com/library/mac/documentation/Swift/Conceptual/Swift_Programming_Language/#//apple_ref/doc/uid/TP40014097-CH3-XID_0
https://developer.apple.com/library/mac/documentation/Swift/Conceptual/Swift_Programming_Language/#//apple_ref/doc/uid/TP40014097-CH3-XID_0
http://www.safelightsecurity.com/swift-pros-and-cons
http://www.safelightsecurity.com/swift-pros-and-cons
http://www.drdobbs.com/security/security-issues-in-swift-what-the-new-la/240168882
http://www.drdobbs.com/security/security-issues-in-swift-what-the-new-la/240168882
http://blog.erratasec.com/2014/06/why-it-had-to-be-swift.html
http://blog.erratasec.com/2014/06/why-it-had-to-be-swift.html
http://itsecurity.co.uk/2014/06/apples-new-swift-is-it-secure/
http://itsecurity.co.uk/2014/06/apples-new-swift-is-it-secure/
https://www.checkmarx.com/2014/08/20/swift-security-issues/
https://www.checkmarx.com/2014/08/20/swift-security-issues/
https://news.ycombinator.com/item?id=7837627
https://news.ycombinator.com/item?id=7837627
https://www.reddit.com/r/swift/comments/2efjdv/security_issues_in_swift_what_the_new_language/
https://www.reddit.com/r/swift/comments/2efjdv/security_issues_in_swift_what_the_new_language/
http://teks.co.in/site/blog/14-reasons-apple-swift-quite-ideal-programming-language-yet/
http://teks.co.in/site/blog/14-reasons-apple-swift-quite-ideal-programming-language-yet/
https://developer.apple.com/swift/blog/?id=5
https://developer.apple.com/swift/blog/?id=5
https://developer.apple.com/library/ios/documentation/Swift/Conceptual/BuildingCocoaApps/InteractingWithCAPIs.html
https://developer.apple.com/library/ios/documentation/Swift/Conceptual/BuildingCocoaApps/InteractingWithCAPIs.html
https://developer.apple.com/library/ios/documentation/Swift/Conceptual/BuildingCocoaApps/InteractingWithCAPIs.html
https://developer.apple.com/swift/blog/?id=6
https://developer.apple.com/swift/blog/?id=6
https://developer.apple.com/library/mac/documentation/Security/Conceptual/SecureCodingGuide/Introduction.html
https://developer.apple.com/library/mac/documentation/Security/Conceptual/SecureCodingGuide/Introduction.html
https://developer.apple.com/library/mac/documentation/Security/Conceptual/SecureCodingGuide/Introduction.html

