Packet Analysis Using Wireshark

Ming Chow (ming@wallofsheep.com) Wall of Sheep and the Packet Hacking Village Twitter: @wallofsheep, @0xmchow

About the Wall of Sheep and the Packet Hacking Village

- Our mission: security awareness
- How we accomplish our mission: interactive demonstrations, unconventional methods
- Our team: all volunteers

login	pass	domain ip	application	cookie / bash
defkor	qla*****	ironhide.gtisc.gatech.edu	нттр	COULT / Hash
produser	pus*****	pushnotifications.timeso	HTTP	
musah@optonline.net	lib*****	optonline.net	POP3	
visitor	Vi\$*****	bc3.homeip.net	HTTP	
csrs11	dNN******	sgee.samsung.csrlbs.com	HTTP	
2014xzt@situ.edu.cn	yua*****	mailstore05.sjtu.edu.cn	POP3	
EAV-015685765	d29*****	update.eset.com	HTTP	
hover	13f*****	boxerupgrades.getboxe	ar HTTP	
	Kin*****	152.66.249.132	IMAP4	
muru	e10*****	e-netsecurity.com.br	IMAP4	
wanderson@e-netsecurity.com.or	TT TAAAAAA	jeff-jensen.com	POP3	
Jeff@jeff-jensen.com	JLU	academy ardrone.com	HTTP	
rorekey	AXI	at auenty .at a onere en		

Wall of Sheep @ - Copyright © 2001-2016 - All rights reserved. www.wallofsheep.com

- All

Analyzing Traffic

What is *Packet* Analysis?

- Look at and understand network traffic
- Also known as analyzing packets, also known as network traffic analysis, also known as packet sniffing, also known as protocol analysis, also known as packet tracing

Why Packet Analysis?

- Troubleshoot networking issues
- Record communications (e.g., email, voice, chat)
- Record and analyze web traffic
- Reconstruct images and other data transmitted on network
- Catch usernames and passwords, personal information, and other sensitive information that were sent insecurely, in plaintext

Source: <u>https://www.wired.com/story/mirai-botnet-minecraft-scam-brought-down-the-internet/</u>

f Ƴ Adding to the complexity, DDoS itself is a notoriously difficult crime to prove—even simply proving the crime ever happened can be extraordinarily challenging after the fact. "DDoS can happen in a vacuum, unless a company captures logs in the right way," Peterson says. Klein, a former UNIX administrator who grew up playing with Linux, spent weeks piecing together evidence and reassembling data to show how the DDoS attacks unfolded.

On the compromised devices, they had to carefully reconstruct the network traffic data, and study how the Mirai code launched so-called "packets" against its targets—a little-understood forensic process, known as analyzing PCAP (packet capture) data. Think of it as the digital equivalent of testing for fingerprints or gunshot residue. "It was the most complex DDoS software I've run across," Klein says.

The FBI zeroed in on the suspects by the end of the year: Photos of the three hung for months on the wall in the Anchorage field office, where agents dubbed them the "Cub Scout Pack," a nod to their youthfulness. (Another older female suspect in an unrelated case, whose photo also hung on the board, was nicknamed the "Den Mother.")

What is a Packet?

- A unit of data
- A data stream (e.g., video, a web page) is comprised of many packets
- In general, a single packet contains the following information:
 - Source and destination IP addresses and ports
 - MAC address
 - Time To Live (TTL)
 - Protocol (e.g., TCP, UDP, IMCP)
 - Payload
- A packet encapsulates all layers of the Open Systems Interconnection (OSI) model

What is the OSI Model?

- "A conceptual framework that describes the functions of a networking or telecommunication system."
- 7 layers
- Each layer is abstracted from the other
- Sources:
 - <u>https://www.networkworld.com/article/</u> <u>3239677/lan-wan/the-osi-model-</u> <u>explained-how-to-understand-and-</u> <u>remember-the-7-layer-network-</u> <u>model.html</u>
 - <u>https://buildingautomationmonthly.com/</u> <u>what-is-the-osi-model/</u>

	OSI (Open Source Interconnection) 7 Layer Mod	lel			
Layer	Application/Example	Central Device/ Protocols			DOD4 Model
Application (7) Serves as the window for users and application processes to access the network services.	End User layer Program that opens what was sent or creates what is to be sent Resource sharing • Remote file access • Remote printer access • Directory services • Network management	Use Applicat SMT	r t ions P		
Presentation (6) Formals the data to be presented to the Application layer. It can be viewed as the "Translator" for the network.	Syntax layer encrypt & decrypt (if needed) Character code translation • Data conversion • Data compression • Data encryption • Character Set Translation	JPEG/ASCII EBDIC/TIFF/GIF PICT		G	Process
Session (5) Allows session establishment between processes running on different stations.	Synch & send to ports (logical ports) Session establishment, maintenance and termination • Session support - perform security, name recognition, logging, etc.	Logical Ports RPC/SQL/NFS NetBIOS names TCP/SPX/UDP Routers IP/IPX/ICMP		A T E W A Y Can be used	
Transport (4) Ensures that messages are delivered error-free, in sequence, and with no losses or duplications.	TCP Host to Host, Flow Control F Message segmentation • Message acknowledgement • A Message traffic control • Session multiplexing C				Host to Host
Network (3) Controls the operations of the subnet, deciding which physical path the data takes.	Packets ("letter", contains IP address) Routing • Subnet traffic control • Frame fragmentation • Logical-physical address mapping • Subnet usage accounting				Internet
Data Link (2) Provides error-free transfer of data frames from one node to another over the Physical layer.	Frames ("envelopes", contains MAC address) [NIC card — Switch — NIC card] (end to end) Establishes & terminates the logical link between nodes • Frame traffic control • Frame sequencing • Frame acknowledgment • Frame elimiting • Frame error checking • Media access control	Switch Bridge WAP PPP/SLIP Land		on all layers	Network
Physical (1) Concerned with the transmission and reception of the unstructured raw bit stream over the physical medium.	Physical structure Cables, hubs, etc. Data Encoding • Physical medium attachment • Transmission technique • Baseband or Broadband • Physical medium transmission Bits & Volts	Hub	Layers		NetWORK

What is a PCAP File?

- PCAP stands for "packet capture"
- .pcap: The common file extension for packet captures and is commonly used in many applications such as *Wireshark*
- A 100 MB PCAP file contains tens of thousands of packets

What is Wireshark?

- Graphical and extensive packet analyzer
- Open source and free
- Platform independent (Windows, macOS, and Linux versions available)
- Features include filtering, reconstructing conversations, reconstructing files based on packets
- Website: https://www.wireshark.org/

The Wireshark User Interface

	•			💼 set2.p	сар		
			۹ 🔶 🚔 ۱	중 👱 📃 🛯		→ 1. Main	Toolbar
📕 Арр	ly a display filter <	<%/>					 Expression
No.	Time	Source	Destination	Protocol Length	Info		:
	83 0.001272	35.157.177.31	172.19.255.246	TCP 64	80 → 52743 [ACK] Seq=1 Ack	=8202 Win=4168 Len=0	
	84 0.001276	35.157.177.31	172.19.255.246	TCP 64	[TCP Dup ACK 83#1] 80 → 52	743 [ACK] Seq=1 Ack=8202 Win=	4168 Len=0
	85 0.001411	35.157.177.31	172.19.255.246	TCP 64	80 → 52743 [ACK] Seq=1 Ack:	=9699 Win=4168 Len=0	
	86 0.001415	35.157.177.31	172.19.255.246	TCP 64	[TCP Dup ACK 85#1] 80 → 52	743 [ACK] Seq=1 Ack=9699 Win=	4168 Len=0
	87 0.001418	35.157.177.31	172.19.255.246	TCP 64	80 → 52743 [ACK] Seq=1 Ack	=12299 Win=4168 Len=0	
	88 0.001421	35.157.177.31	172.19.255.246	TCP 64	[TCP Dup ACK 87#1] 80 → 52	743 [ACK] Seq=1 Ack=12299 Win	=4168 Len=0
	89 0.001556	35.157.177.31	172.19.255.246	TCP 64	80 → 52743 [ACK] Seq=1 Ack	=13796 Win=4168 Len=0	
	90 0.001559	35.157.177.31	172.19.255.246	TCP 64	[TCP Dup ACK 89#1] 80 → 52	743 [ACK] Seq=1 Ack=13796 Win	=4168 Len=0
	91 0.001564	23.61.194.41	10.133.31.228	TCP 1358	[TCP Out-Of-Order] 443 \rightarrow 5.	3606 [ACK] Seq=4294856797 Ack	=1 Win=980 L
	92 0.001569	23.61.194.41	10.133.31.228	TCP 1358	[ICP Out-of-order] 443 \rightarrow 5.	3606 [ACK] Seq=4294856797 Ack	=1 Win=980 L
	93 0.001573	23.61.194.41	10.133.31.228	TCP 1358	443 → 53606 [ALK] Seq=2601	ACK=1 W1n=980 Len=1300 [TCP	segment of a
	94 0.0015/8	23.01.194.41	10.133.31.228	TCP 1358	[ICP Retransmission] $443 \rightarrow$	53606 [ACK] Seq=2601 ACK=1 W	1n=980 Len=1
	95 0.001842	35.15/.1//.31 25.157.177.21	172.19.255.240	TCP 64	$50 \rightarrow 52/43$ [ACK] Seq=1 ACK	=10396 WIN=4108 Len=0 742 [ACK] Sog=1 Ack=16206 Win	-4169 Lon-0
	90 0.001045	33.13/.1//.31 25.157.177.21	172.19.255.240	TCP 64	[ICP Dup ACK 95#1] $\delta 0 \rightarrow 52$	-17802 Win=4168 Lon=0	=4106 Len=0
	97 0.001849	35 157 177 31	172.19.255.240	TCP 64	$[TCP Dup ACK 97#1] 80 \rightarrow 52^{\circ}$	-17895 WIN-4108 Lenew 743 [ACK] Seg-1 Ack-17893 Win	-4168 Len-0
	90 0.001032	165 227 0 37	172,19,235,240	TCP 70	$443 \rightarrow 58532$ [ACK] Seg=1 Ac	k=1 Win=758 Len=0 TSval=21500	274 TSecr=27
▶ Fra	ame 1: 1358 byte	s on wire (10864 bit	s), 1358 bytes captur	ed (10864 bits)			
▶ Eth	nernet II, Src:	IntelCor_31:f8:14 (a	0:36:9f:31:f8:14), Ds	t: 02:cd:a3:2f:71	:ee (02:cd:a3:2f:71:ee)	X	
▶ 802	2.10 Virtual LAN	, PRI: 0, DEI: 0, ID	: 1			O De cleat	List Dama
▶ Int	ernet Protocol	Version 4, Src: 192.	195.83.134, Dst: 10.1	.10.31.204		2. Packet	LIST Pane
▶ Tra	ansmission Contr	ol Protocol, Src Por	t: 9001, Dst Port: 50	134, Seq: 1, Ack:	1, Len: 1288		
🕨 Sec	cure Sockets Lay	er					
0000	02 cd a3 2f 71	ee a0 36 9f 31 f8	14 81 00 00 01	/q· <mark>·6 ·</mark> 1·····			
0010	08 00 45 28 05	3c a2 81 00 00 3f	06 95 8† c0 c3	<u>-(< · · · ? · · · · 2</u> Dv			
0020	a9 40 80 10 05		01 08 0a ce e6	······			
0040	77 e1 0b 8c ef	a4 81 67 cb 1e 65	80 9a 67 63 b9 w	3 Packet	Details Pane (a	Il lavers of the ()SI model)
0050	e9 4f 4c 6c bd	91 0e b1 6f 4f 30	b1 18 cd b4 35 01	000 5	Details Falle (c	in layers of the c	
0060	f0 61 31 bb 3e	8b 74 31 35 b0 e0	4a 4d 6e 86 03 ·a:	l·>·t1 5··JMn··			
0070	01 20 3a e5 9e			U			
0090	9e 25 0a a2 45	14 e7 54 4f 57 ed	db 6d bd 99 ce 🛁 🍇	·E··T OW··m···			
00a0	35 98 11 ed 43	5b 35 35 1c 68 b2	ad 90 d6 d0 a2 5	C[55 h			
00b0	a2 e8 98 02 2e	58 68 e2 a2 1f 9a	58 04 9a 78 32	Xh X x2	A Packet	Rytes Dane (hin	arv data)
0000 00d0	3d fh fc 84 02	4/ 04 /1 TC T/ 04 6a 71 04 fd 68 b8	ba ae 8C 3e 33 l	unuo.q>3 ia. hG3.		Dytes Falle (Dill	ary ualaj
00e0	9e 23 a1 52 e9	fc 64 11 13 e5 81	33 c8 6d 02 96 #	R d 3 m			
0 7	set2.pcap				Packets:	76409 · Displayed: 76409 (100.0%)	Profile: Default

Exercise 1: Opening a Simple PCAP File in Wireshark

- Download: https://www.cs.tufts.edu/comp/116/simple.pcap
- Question 1: How many packets are there?
- Question 2: What networking protocol is used?
- Question 3: What is the source IP address?
- Question 4: What is the destination IP address?
- Question 5: What port number is the source using to communicate with the destination (or what port number is the destination listening on)?
- BONUS: Do you notice the "three-way handshake"?

Reconstructing a Conversation in Wireshark

- 1. Click on a packet (it will be highlighted in blue)
- 2. Right-click on packet
- 3. Go to "Follow"
- 4. Follow one of the following streams depending on protocol (TCP Stream is most common)

				-					
	Destination	Protocol	Length	Info					
.246.134	172.19.223.252	0penV	1427	MessageType: P_D	ATA_V1				
.246.134	172.19.223.252	0penV	1427	MessageType: P_D	ATA_V1				
.246.134	172.19.223.252	0penV	1427	MessageType: P_D	ATA_V1				
3.23.201	10.101.31.244	TCP	1358	80 → 53851 [ACK]	Seq=1289 Ack=1 Win=121 L	en=1288	TSval=319568233	38 TSecr=	444894703
3.23.201	10.101.31.244	ТСР	1358	[TCP Retransmiss:	ion] 80 → 53851 [ACK] Sec	=1289 Ac	ck=1 Win=121 Ler	n=1288 TS	val=31956
8.23.201	10.101.31.244	ТСР	1358	80 → 53851 [ACK]	Seq=2577 Ack=1 Win=121 I	en=1288	TSval=319568233	38 TSecr=	444894703
3.23.201	10.101.31.244	ТСР	1358	[TCP Retransmiss:	Mark/Unmark Packet	ЖM	k=1 Win=121 Ler	n=1288 TS	val=31956
.246.134	172.19.223.252	0penV	1427	MessageType: P_D	Ignore/Unignore Packet	ЖD			
.246.134	172.19.223.252	0penV	1427	MessageType: P_D	Set/Unset Time Reference	ЖΤ			
3.31.228	23.61.194.41	ТСР	94	[TCP Dup ACK 363;	Time Shift	Ω₩Т	4294855497 Win=	=32768 Le	n=0 SLE=1
3.31.228	23.61.194.41	ТСР	94	[TCP Dup ACK 363;	Packet Comment	∼жс	4294855497 Win=	=32768 Le	n=0 SLE=1
3.31.228	23.61.194.41	TCP	94	53606 → 443 [ACK	Seq-1 Ack-4294056797 Wi		_en=0 SLE=1 SR	E=1301 SL	E=4294964
3.31.228	23.61.194.41	ТСР	94	[TCP Dup ACK 431;	Edit Resolved Name		294856797 Win=3	32768 Len	=0 SLE=1
3.31.228	23.61.194.41	ТСР	94	[TCP Dup ACK 431;	Apply on Filter		294856797 Win=3	32768 Len	=0 SLE=1
3.31.228	23.61.194.41	ТСР	94	[TCP Dup ACK 431;	Apply as Filter		294856797 Win=3	32768 Len	=0 SLE=1
3.31.228	23.61.194.41	TCP	94	53606 → 443 [ACK	Prepare a Filter	n=32768	_en=0 SLE=1 SR	E=2601 SL	E=4294964
3.31.228	23.61.194.41	ТСР	94	[TCP Dup ACK 435;	Conversation Filter		294863297 Win=3	32768 Len	=0 SLE=1
3.31.228	23.61.194.41	ТСР	94	[TCP Dup ACK 435;	Colorize Conversation	•	294863297 Win=3	32768 Len	=0 SLE=1
3.31.228	23.61.194.41	ТСР	94	[TCP Dup ACK 435;	SCTP	•	294863297 Win=3	32768 Len	=0 SLE=1
.50.80	10.120.31.212	TCP	1358	51413 → 57345 [A	Follow	186 I.e. 논	TCP Stream	て企業T	cr=28818
.50.80	10.120.31.212	ТСР	1358	[TCP Retransmiss:	Comu		UDP Stream	て分業U	TSval=4
50.80	10.120.31.212	TCP	1358	51413 → 57345 [A	Сору	86 Len -	SSL Stream	飞企#S	cr=28818
/ire (10864 b	its), 1358 bytes capt	ured (10864	bits)		Protocol Preferences	•	HTTP Stream	て企業H	
31:†8:14 (a)	36:91:31:18:14), Ds	t: Apple_b2	:bc:34	(d8:1d:/2:b2:bc:	Decode As		-		
), DEI: 0, ID	: 1				Show Packet in New Winds	NWC			
4, Src: 17.2	53.23.201, Dst: 10.10	1.31.244							
col, Src Por	t: 80, Dst Port: 5385	1, Seq: 257	7, Ack	(: 1, Len: 1288					

6	9f	31	f8	14	81	00	00	01	··r·4·6 ·1····	
4	00	00	3f	06	6d	09	11	fd	··E··<··?·m···	
0	d2	5b	c4	f9	cb	7d	7a	d8	···e···P ·[···}z·	
5	00	00	01	01	08	0a	be	7a	·····z	
4	c3	aa	0d	62	32	71	17	44	>"····b2q·D	
7	95	d4	a4	0d	43	10	f5	21	· · · · D · · · · · · C · · !	
0	27	9f	e5	49	ac	c5	4b	11	····R/0 '··I··K·	
-										

Exercise 2: Extracting Pictures

- Download: https://www.cs.tufts.edu/comp/116/set1.pcap
- Question 1: What insecure protocol was used to transmit pictures on network?
- Question 2: How many pictures were transmitted?
- Question 3: Extract one of the pictures that was transmitted. HINT: show and save the picture as "Raw" format.

Base64

- Base64 is an *encoding* scheme
- Used to represent binary data in ASCII text format
- Base64 is not encryption. https://sempf.net/post/base64-is-not-encryption
- Why is this important? "In basic HTTP authentication, a request contains a header field of the form Authorization: Basic
 <credentials>, where credentials is the Base64 encoding of id and password joined by a colon." (source: https://en.wikipedia.org/wiki/Basic access authentication)

Exercise 3: Extracting Username:Password Pairs

- Download: https://www.cs.tufts.edu/comp/116/set3.pcap
- Question 1: What protocol was used to transmit the username:password pair (credentials)?
- Question 2: What is one username:password pair in this PCAP set? HINT: use Edit > Find Packet
- Question 3: Is the username:password pair valid? Why / why not?

Where Do You Go From Here?

- Sniff and validate passwords
- Reconstruct files (e.g., images, MP3s)
- Volunteer at the Wall of Sheep and the Packet Hacking Village
- Learn more at our Packet Inspector event
- Further develop your skills at our Packet Detective event <u>https://www.wallofsheep.com/pages/packet-detective</u>
- Enter Capture The Packet, a DEF CON Black Badge contest

(If time allows) Exercise 4: Extracting Username:Password Pairs

- Download: https://www.cs.tufts.edu/comp/116/set2.pcap
- This PCAP set is from the DEF CON conference. I am not responsible for the contents in this PCAP set.
- Question 1: How many packets are there in this PCAP set?
- Question 2: Find all the credentials in this PCAP set
- Question 3: Are the credentials valid?
- BONUS: Provide a list of all the domains and IP addresses in this PCAP set

Appendix: What is tshark?

- Command-line-based Wireshark
- Installed with Wireshark
- Dumps and analyzes network traffic
- Example, list the hosts (IP addresses and domains) in the PCAP file
 - tshark -r file.pcap -q -z hosts, ipv4