
Android Apps Development
Boot Camp

Ming Chow
Lecturer, Tufts University

DAC 2011
Monday, June 6, 2011
mchow@cs.tufts.edu

Overview of Android

Released in 2008
Over 50% market share
Powers not only smartphones but also tablets
Heterogeneous ecosystem of Android devices
Unlike Apple's "walled garden" (i.e., for deploying apps to
the App Store), Android is open

In This Boot Camp

What we will cover:
Android architecture
Creating apps using Android SDK and Eclipse
User interface widgets, events, and layouts
2D drawing
Data storage
Using location-based services (e.g., GPS)

What we will not cover:
Camera
Multiple views

What we will cover if time permits:
Networking
Logging and debugging
Performance and response enhancements
Publishing to Android Market

Factors in Mobile / Tablet Development

Limited memory
Display capabilities (screen size limit)
Usage fees
App speed
Internet access
User input (i.e., touch, multitouch)
Built-in capabilities (phone, GPS, camera)
Micropayment
Multitasking
Services

Android Architecture

Linux Kernel (lowest level)
Support for keypad, camera, Wi-Fi, power management,
display, flash memory

Android Runtime
Contains Dalvik VM, similar to the Java VM

Libraries
Includes OpenGL, SSL, sqlite, WebKit

Application Framework (highest level)
Location, view, content providers, window, activities, etc.

Components of an Android App

Activity - a single screen, the user interface. While you can have
multiple activities in an app, they are independent of each other!
Service - runs in background without blocking an activity or deter
the user experience; does not provide user interface. Example:
getting your geolocation, latitude and longitude coordinates
Content provider - shared set of application data; persistent
storage. Examples: the file system or sqlite database
Broadcast receiver - responds to system-wide announcements.
Example: battery is running low
Intent - asynchronous messaging system in Android; can be sent
to your application or between applications. Messages are objects.

Example: ACTION_BATTERY_LOW

Android Activity Lifecycle

Our Development Environment

1. Eclipse (Helios)
2. Android SDK

In ANDROID_SDK_ROOT/tools: emulator, apkbuilder,
sqlite3, etc.

3. ADT Plugin for Eclipse
4. Necessary Android OS targets for Android Virtual Device

(AVD) for emulator:
Android 2.1-update1 - API Level 7
Google APIs (Google, Inc.) - API Level 7
Android 2.2 - API Level 8
Google APIs (Google, Inc.) - API Level 8

Structure of an Android App in Eclipse

src - Your packages and source files (.
java)
gen - Generated Java Files

R.java - DO NOT MODIFY THIS
FILE!

res - Application Resources (more next slide)
AndroidManifest.xml - Information about
the app including components of the
application, permissions, linked libraries,
and minimum version of Android OS and
API the app requires
Reference: http://developer.android.
com/guide/topics/manifest/manifest-intro.
html

http://developer.android.com/guide/topics/manifest/manifest-intro.html
http://developer.android.com/guide/topics/manifest/manifest-intro.html
http://developer.android.com/guide/topics/manifest/manifest-intro.html

Application Resources

Images
HDPI, MDPI, and LDPI
Icon for app

Layouts
Eclipse provides a drag-and-drop interface to construct layouts

Menus
Define layout of menus. Example: the menu upon clicking on
the "home" icon in app

Values
Strings: key-value mappings of strings used in app (instead of
hard-coding in source code)

Layout, menu, and value files are XML
Modifying or adding files to the folders under res will automatically
modify the gen/R.java file!

User Interface Elements

Views
In android.view package
Refers to the rectangular portion of screen; "container"
Base class for all widgets and layouts
Widgets

In android.widget package
The stuff to draw: TextView, Button, RadioButton, DatePicker,
Spinner (drop-down), ProgressBar, etc.

Layouts
A view object
Determine how to lay out other objects on screen; doesn't
draw stuff
Examples: LinearLayout, TabLayout

Hands-On: Creating Your First Android
App with Eclipse and Android SDK
Assuming that you have downloaded and installed Eclipse, Android
SDK, the ADT Plugin for Eclipse, and Android OS targets.
1. In Eclipse, create a new Android Virtual Device (for your emulator)

in Eclipse by clicking on:
2. In Eclipse, go to File > New > Android Project
3. Enter Project Name, select Android 2.1-update1 as the Target

Name, Application Name, Package Name, and Activity Name (i.e.,
the entry class). Min SDK version is optional

4. In the Package Explorer Go to your project folder > src >
Package_Name > Activity_Name.java

5. Modify the source; see next slide (what you need to modify is
in bold)

6. Assuming there is are no errors in source, click on the icon to
run your app in the Android emulator

Your First Android App (Source)

package ...;

import android.app.Activity;
import android.os.Bundle;
import android.widget.*;

public class ... extends Activity
{
 public void onCreate(Bundle savedInstanceState)
 {
 super.onCreate(savedInstanceState);
 TextView tv = new TextView(this); // A TextView is simple; used to display fixed text strngs
 tv.setText("Hey, this works!");
 tv.setHeight(50);
 setContentView(tv);
 }
}

User Interface Event Listeners

Within widgets
When you draw a widget, you need to customize its
action. Example for a button, what to do after clicking on it?
Most widgets in View will have a setOn*Listener
method. Example for a Button: setOnClickListener(callback
method in here)
Reference: http://developer.android.com/guide/topics/ui/ui-
events.html

http://developer.android.com/guide/topics/ui/ui-events.html
http://developer.android.com/guide/topics/ui/ui-events.html

Hands-On: ButtonDemo1

ButtonDemo1 uses a widget (a button) and the onClick
listener
Import the ButtonDemo1 project into Eclipse:
1. In Eclipse, File > Import...
2. Under General, select Existing Projects into Workspace
3. Browse to the folder where you saved the ButtonDemo1

project and click "Open..."
4. A list of available Eclipse projects shall appear. Check

the ButtonDemo1 project (and others for that matter) to
import them.

5. The projects should be available in your Package
Explorer window

User Interface Event Handlers

Within views (i.e., on entire screen)
onKeyUp()
onKeyDown()
onTouchEvent()
onFocusChanged()
Reference: http://developer.android.com/guide/topics/ui/ui-
events.html

http://developer.android.com/guide/topics/ui/ui-events.html
http://developer.android.com/guide/topics/ui/ui-events.html

User Interface Layouts

The first Android app did not use any layouts
Analogy: Cascading Style Sheets (CSS) in web development
Define screen elements and layout
Resource files stored in /res/layout
/res/layout/main.xml sets the screen's display on application load
(onCreate())
Can also be created and modified via GUI in Eclipse
Example:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 >
</LinearLayout>

Hands-On: ButtonDemo2

The difference between ButtonDemo1 and ButtonDemo2:
button was create programmatically using Java in
ButtonDemo1 while the button in ButtonDemo2 is created
using a layout.
Import the ButtonDemo2 project into Eclipse and run

Hands-On: WidgetsDemo1

Features:
Changing a checkbox from checked to unchecked, vice-
versa
Uses a layout

Import the WidgetsDemo1 project into Eclipse and run

2D Drawing and Images in Android

In Java SDK and Swing, drawing can be done in a JPanel. In
Android, drawing is done on a Canvas in a View
Package of interest: android.graphics
Similar functions compared to 2D drawing using Java SDK and
Swing
Images in Android: bitmaps

The android.graphics.Bitmap class provide access to the image
attributes and methods for image manipulation.

The idea:
Create a custom view (i.e., a subclass of View)
Override onDraw() method
Instantiate a Paint object for drawing

Hands-On: AndroidDrawingTest

Features:
Custom view
Draw (2D) onto canvas
Clear background color
Draw anti-alias text
Draw shape
Render an image (see image in res/drawable/ directory)

Import the AndroidDrawingTest project into Eclipse and run

Hands-On: Finger Doodle

Released by yours truly on Android Market
Entry class: FingerDoodle
Features:

Options menu layout
{H|M|L}DPI icons
Strings resource file
One thread for drawing
Color picker (taken from Google)
One subclass of SurfaceView which provides a
dedicated drawing surface embedded inside of a view
hierarchy
Uses onTouchEvent() event handler

Permissioning

Fine-grain, least-privilege, permissioning used for Android apps. That is,
you have to specify what you need (allow)!
Modify AndroidManifest.xml
Add permissions before the </manifest>

Format: <uses-permission android:name="android.permission.????" />
Examples:

ACCESS_COARSE_LOCATION - Get location via Wi-Fi, not GPS
ACCESS_FINE_LOCATION - Get location via GPS
INTERNET - Allows applications to open network sockets
CAMERA - Duh!
FLASHLIGHT - Allows access to the flashlight
SEND_SMS - Allows app to send SMS messages

More: http://developer.android.com/reference/android/Manifest.permission.html

http://developer.android.com/reference/android/Manifest.permission.html

Location-Based APIs (i.e., GPS)

Get an instance of LocationManager with a call to
getSystemService() using LOCATION_SERVICE (part of
Context) constant
Implement a LocationListener class

Contains one method you must override: public void
onLocationChanged(Location location)

Request for location updates via requestLocationUpdates()
Be sure to add permission to use GPS in AndroidManifest.
xml file
Reference: http://developer.android.com/guide/topics/location/obtaining-
user-location.html

http://developer.android.com/guide/topics/location/obtaining-user-location.html
http://developer.android.com/guide/topics/location/obtaining-user-location.html

Example Code for Location-Based API

...

...

...
private LocationManager lm;
private MyLocListener myLL; // you have to write MyLocListener

private void init()
{
 lm = (LocationManager) this.getSystemService(LOCATION_SERVICE);
 lm.requestLocationUpdates(LocationManager.GPS_PROVIDER,
 DEFAULT_GPS_MIN_TIME,
 DEFAULT_GPS_MIN_DISTANCE,
 myLL);
 ...
 ...
}

Simulating the GPS on the Emulator

Run your app via Eclipse (i.e., click on the green "Go"
button)
After your emulator loads your app, open a terminal (Mac
OS X, Linux) or Command Prompt (Windows)
Run telnet localhost 5554 which will connect you to the
emulator to run commands
Run geo fix lon lat. Example: geo fix -71.11982 42.406949

Hands-On: GeoAppTemplate

1. Import the GeoAppTemplate project into Eclipse and run
2. After your emulator loads the app, open a terminal (Mac OS

X, Linux) or Command Prompt (Windows)
3. Run telnet localhost 5554 which will connect you to the

emulator to run commands
4. Run geo fix some_lon some_lat. Example: geo fix -71.11982

42.406949

Database and Data Storage

Shared Preferences
Key-value pairs
Data types supported: boolean, float, integer, long, string
The class: android.content.SharedPreferences
Data stored in /data/data/package_name/shared_prefs/prefs_filename.xml

Files and Directories
Application data stored in /data/data/package_name/
Context.openFileInput()
Context.openFileOutput()
Content.deleteFile()
Context.fileList()
Use standard java.io packages such as FileOutputSteam

Database and Data Storage (cont.)

sqlite
The class: android.database.sqlite.SQLiteDatabase
Database files stored
in /data/data/package_name/database/dbasename.db

Drawbacks of Android; Work-in-
Progress

Caveats
Android's openness has its drawbacks

Ripe for malware (e.g., many versions of Bank of
America and Starbucks apps on Android Market)

Heterogeneous ecosystem of Android devices =>
fragmentation (too many versions Android OSs across
different manufacturers and devices out there)
Unlike Apple, Android has many different app stores
other than the Android Market (e.g., Amazon). Alas, less
visibility of apps and less revenue potentials
User interface and experience may not be as pretty as
iOS

Android is constantly maturing

Advance Topics (if time allows)

Networking
Logging and debugging
Performance and response enhancements

Networking in Android

Very similar to networking in Java SDK
Necessary packages:

java.io.InputStream
java.net.HttpURLConnection
java.net.URL

Networking in Android: Working Source
import java.io.InputStream;
import java.net.HttpURLConnection;
import java.net.URL;
...
private String getContent (String url)
{
 try {
 URL api = new URL(url);
 HttpURLConnection conn = (HttpURLConnection)api.openConnection();
 InputStream is = conn.getInputStream();
 BufferedReader r = new BufferedReader(new InputStreamReader(is));
 StringBuilder total = new StringBuilder();
 String line;
 while ((line = r.readLine()) != null) {
 total.append(line);
 }
 r.close();
 is.close();
 return total.toString();
 }
 catch (MalformedURLException e) {
 return null;
 }
 catch (IOException e) {
 return null;
 }
}

Logging and Debugging

android.util.Log - provides ability to send log output
Verbosity levels:

Log.v(tag, note) => Verbose
Log.d(tag, note) => Debug
Log.i(tag, note) => Info
Log.w(tag, note) => Warning
Log.e(tag, note) => Error (uh oh...)
Log.wtf(tag, note) => Enough said.

Tag: a string, private static final. Example: private static final String
TAG = "***** FingerDoodle";
Where to view log:

ANDROID_SDK_ROOT/platform-tools/adb (turn on AVD first)
Eclipse Logcat

Performance and Responsiveness

http://developer.android.com/guide/practices/design/performance.html
http://developer.android.com/guide/practices/design/responsiveness.html

Some ideas:
Avoid implementing and using getters and setters
Avoid creating unnecessary objects
Beware of using some libraries (which may provide
functions that are woefully inefficient)
Use static final for constants
Never allocate memory (or release it)

http://developer.android.com/guide/practices/design/performance.html
http://developer.android.com/guide/practices/design/responsiveness.html

Preparing Your App for the Hardware
Device or Android Market

When you test apps via emulator, Android uses a debug certificate
Sign your app; create key and certificate for an app:

 RTFM: http://developer.android.com/guide/publishing/app-signing.
html or...
...in Eclipse, right-click on project > Android Tools > Export Signed
Application Package...

To deploy your app to your hardware device (e.g., Droid Incredible):
Go to bin/ directory of your project and copy the .apk file (the app
binary) to your hardware device (e.g., phone) via USB cable
Install the app onto your file via ASTRO File Manager app (free via
Android Market)

To deploy your app to the Android Market:
https://market.android.com/publish/Home
HDPI icon of app 512w x 512h PNG required!
If you are selling your app, a tax ID required

http://developer.android.com/guide/publishing/app-signing.html
http://developer.android.com/guide/publishing/app-signing.html
https://market.android.com/publish/Home

Acknowledgements and References

Android Wireless Development (2nd Edition) by Shane Conder and Lauren Darcey (Addison-Wesley
Professional, 2010)
http://arstechnica.com/gadgets/news/2011/04/developer-frustration-growing-along-with-android-
market-share.ars
http://www.droidnova.com/playing-with-graphics-in-android-part-i,147.html
http://developer.android.com/resources/faq/commontasks.html
http://mobiforge.com/developing/story/using-google-maps-android

http://www.amazon.com/Android-Wireless-Application-Development-Developers/dp/0321743016/
http://www.amazon.com/Android-Wireless-Application-Development-Developers/dp/0321743016/
http://arstechnica.com/gadgets/news/2011/04/developer-frustration-growing-along-with-android-market-share.ars
http://arstechnica.com/gadgets/news/2011/04/developer-frustration-growing-along-with-android-market-share.ars
http://www.droidnova.com/playing-with-graphics-in-android-part-i,147.html
http://developer.android.com/resources/faq/commontasks.html
http://mobiforge.com/developing/story/using-google-maps-android

